
GROUND-BASED AUTOMATED SCHEDULING FOR THE MARS 2020 ROVER
Virtual Conference 19–23 October 2020

A. Yelamanchili​1​, J. Agrawal​1​, S. Chien​1​, J. Biehl​1​, A. Connell​1​, U. Guduri​1​,
J. Hazelrig​1​, I. Ip​1​, K. Maxwell​1​, K. Steadman​1​, S. Towey​1

1​Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr Pasadena, CA 91109, United
States, E-mail: firstname.lastname@jpl.nasa.gov

ABSTRACT

The Mars 2020 Rover Mission will be using an
automated ground-based scheduling system called
Copilot to schedule the rover’s activities at landing.
Using automated scheduling technology will allow
for plans to be generated more quickly. Because
automated scheduling tools have not been widely
used for prior rover missions, developing users’ trust
in the system is crucial. An explainable scheduling
tool called Crosscheck has been developed to
visualize the creation of a schedule, and to explain
why activities failed to schedule given their
constraints. This will allow science planners to
change activity constraints to allow failed activities to
successfully schedule, achieving their science goals.

1 INTRODUCTION

The Mars 2020 Perseverance Rover is scheduled to
land on Mars on February 18, 2021 [1]. Once on
Mars, the rover’s activities will be scheduled by a
ground-based scheduling system [2] known as
Copilot. A scheduler onboard the rover [3] has been
developed for later in the mission. Both the ground
and onboard schedulers use the same core scheduling
algorithm​ ​[2,3,4,5].

Automated scheduling systems have not been widely
used in prior rover missions, with the exception of a
system developed for the Mars Exploration Rover
Mission [6]. In most operations scenarios, science
planners manually generate a schedule consisting of
activities, and ensure the schedule satisfies all given
constraints. This manual process results in a
significant amount of time devoted to creating a
schedule. Automating the generation of a schedule of
activities based on their input constraints aims to
speed up this process.

It is also imperative that users have trust in the
automated system. To build this trust, as well as to
provide feedback on how to change constraints to
achieve a better schedule, an explainable scheduling
tool called Crosscheck was developed. Crosscheck
provides a visual representation of the schedule being

constructed and what constraints were considered.
For activities that failed to schedule, additional
analysis is done to determine why they failed to
schedule. This information is also provided to users
in the interface. This information allows them to
change constraints on activities that would lead to
them being successfully scheduled.

The remainder of this paper describes the scheduling
problem, as well as how the scheduler auto-generates
certain required activities based on other activities in
the schedule. It also describes the algorithms
Crosscheck uses to determine why activities failed to
schedule. Finally, it describes how science planners
will generate a schedule, how they use Crosscheck to
understand the schedule, and how to resolve any
activities that failed to schedule.

2 SCHEDULING PROBLEM

2.1 Activity Scheduling and Constraints

The scheduler is a non-backtracking scheduler that
schedules in priority first order and never removes or
moves an activity after it is placed during a single run
of the scheduler. The priorities are determined using
a squeaky wheel approach [2]. Activities are given
constraints such as duration, resources claimed,
dependencies on other activities, state requirements,
and start time windows. Activities can also change
states at their start and end times, and use resources
that are globally constrained, such as data volume,
energy, and peak power. Additional details about the
core scheduling algorithm can be found in [3].

2.2 Scheduling Wake/Sleep Activities

The M2020 rover’s power source is a Multi-Mission
Radioisotope Thermoelectric Generator (MMRTG)
[7]. While the MMRTG constantly generates energy,
the CPU’s awake and “idle” state (i.e. no other
activities) consumes more energy than the MMRTG
provides. Therefore, the rover’s energy, or battery
state of charge (SOC) only increases when it is
asleep. The rover, however, must be awake to
execute certain activities.

The scheduler is responsible for creating and
scheduling wakeup and shutdown activities as
necessary when scheduling activities. Fig. 1 shows an
example of activities with their required wakeup and
shutdown activities, as well as the corresponding
awake/asleep periods.

Figure 1. Activities with wakeups and shutdown
scheduled for them, as well as the awake/asleep

periods

There are additional constraints on awake and asleep
periods to prevent the rover from waking up and
shutting down too frequently - a minimum sleep time
constraint, and a minimum awake time constraint.
These constraints are also considered when
determining where to place the wakeup and shutdown
activities.

If an activity requires the rover to be awake but there
are no suitable times for wake/sleep activities to be
scheduled for it, the activity will fail to schedule.
Additional details on the wake/sleep scheduling
algorithm can be found in [4].

2.3 Scheduling Heating Activities

In addition to some activities requiring the rover to be
awake, certain activities require specific areas of the
rover to be sufficiently heated before the activity can
commence. They also require the areas to maintain a
proper temperature throughout the duration of the
activity.

The scheduler is responsible for creating and
scheduling preheat and maintenance heating activities
as activities necessitate. Fig. 2 shows an example of
an activity with its required preheat and maintenance
activities.

Figure 2. Activity with its required heating activities

If an activity’s required preheat and maintenance
activities are unable to be scheduled, the activity will
fail to schedule.

3 ACTIVITY FAILURE ANALYSIS

Crosscheck is an explainable scheduling tool that has
been developed to give users information on how the
schedule made by Copilot was constructed, as well as
to give information about why activities failed to be
included in the schedule. This information will allow
science planners to understand how they can modify
the input activities and their constraints to obtain their
desired schedule that does not violate any constraints.

There are two main factors that contribute to where
an activity is scheduled and whether it is successfully
added to the schedule at all. These factors are the
scheduling step the activity is scheduled at,
determined by its priority, and its constraints. For
activities that fail to schedule, additional analysis is
done to determine two pieces of information that can
aid in the resolution of the failure: the earliest
scheduling step at which the activity would have
failed to schedule, called its first failure step, and the
constraints that were violated at this scheduling step.

3.1 Determining First Failure Step

Identifying the first failure step gives insight into
what activities were scheduled prior to the failed
activity that led to it being unable to schedule.
Changing constraints on activities scheduled after the
first failure step would not allow the activity to
schedule, however, changing constraints on the
activities scheduled prior to the first failure step may.
The activity scheduled directly prior to the first
failure step is considered to be in direct conflict with
the failed activity. For the activity to possibly
schedule, science planners must do one of the three
things:

● Modify how the conflicting activity is
scheduled by directly changing its
constraints

● Modify how the conflicting activity is
scheduled by changing constraints on
previously scheduled activities

● Modify how the failed activity is scheduled
relative to the conflicting activity is
scheduled by changing its constraints

It is also possible an activity may fail on its own with
no other activities in the plan, in which case there are
no directly conflicting activities. In the case of a state
requirement that cannot be met by anything in the
current plan, science planners may need to add an
activity to the plan that would allow the rover to be in
the required state.

3.2 Determining Unsatisfiable Constraints

Once the earliest failure step of the activity is
determined, we determine the constraints that were
unsatisfiable at that step, leading to the activity not
being able to be scheduled. The scheduling algorithm
consists of two primary phases, and activities can fail
to schedule in either of those phases for a variety of
reasons.

In the first phase, valid intervals for a subset of the
activity’s constraints are computed. A valid interval
for a constraint is a continuous time interval in which
that constraint is satisfiable for the duration of the
activity. The valid intervals for each constraint are
intersected together to create final valid intervals that
are passed to the second phase of scheduling.

In the second phase of scheduling, wake/sleep
activities, heating activities, and plan wide constraints
are considered to determine the activity’s final start
time.

Crosscheck determines which of the phases the
activity fails to schedule during, and which
constraints it would violate that are considered during
that phase.

3.1 Failures due to Valid Intervals

First, Crosscheck checks if there were any final valid
intervals after each constraint’s valid intervals were
intersected together. If the final valid intervals are
empty, there was some combination of constraints
that were incompatible with each other. Crosscheck
seeks to find the minimal set of constraints that are
incompatible with each other.

For each constraint, we first check if any have no
valid intervals on their own. If any do, these
constraints are output as the cause of the failure. If
each constraint has at least one valid interval, the
valid intervals from each pair of constraints are
intersected together. If there are any pairs of
constraints that have no valid intervals after
intersection, these sets of constraints are output as the
cause of the failure. If each pairwise set of constraints
has valid intervals, this process continues with each
set of three constraints, and so on, until we find some
combination of constraints that do not have valid
intersections between their valid intervals.

In order to allow the failed activity to schedule, the
valid intervals for the constraints identified in the
above step need to be changed by the user somehow.
This can be done by either directly changing
constraints on the failed activity itself, or changing
constraints on previously scheduled activities, that

would allow the valid intervals for the failed
activity’s constraints to change.

3.2 Failures due to Plan-wide Constraints and
Sleep/Heat Scheduling

Activities may fail to schedule during the second
phase of scheduling for one of the following reasons:

● An activity’s required preheat would be
outside of the plan horizon

● The peak power used by an activity and its
required sleep/heat activities would violate
the maximum peak power constraint

● The energy used by an activity and its
required sleep/heat activities would violate
the minimum state of charge constraint

● Scheduling an activity’s required sleep
activities would violate the minimum asleep
constraint or the minimum awake constraint

● An activity’s required heating activities
would be scheduled outside of the
operability window for the required heaters

Multiple time points may be considered for
scheduling the activity’s start time during this phase.
Each time point may fail for one of the above
reasons, so there may be multiple different reasons
for the failure. Crosscheck will indicate each unique
one.

4 CROSSCHECK VISUALIZATION

Crosscheck enables users to visualize the state of the
schedule at each scheduling step, as well as the
information on why each failed activity failed to
schedule. The knowledge of why activities failed to
schedule will let users understand how they may
modify constraints to enable those activities to
successfully schedule.

Five timelines are visible at each scheduling step:

● Output plan - the activities that have been
successfully scheduled at or prior to this
scheduling step

● Yet to be scheduled - the activities that have
a lower scheduling priority and will be
scheduling in later scheduling steps

● Failed to schedule - the activities that were
unsuccessfully scheduled at or prior to this
scheduling step

● Energy profile - the energy usage over time
for activities in the output plan at this
scheduling step

● Peak power profile - the peak power used at
each time for activities in the output plan at
this scheduling step

Fig. 3 shows an example of the last scheduling step
of a plan visualized in Crosscheck. The final
grounded schedule is visible in the top timeline,
along with all of the activities that failed to schedule
in the third timeline.

Figure 3. Crosscheck visualization of a plan

4.1 Activity Information

For each activity, users are able to change the view to
see the state of the plan at the scheduling step in
which that activity was attempted to be scheduled.
For activities in the output plan or failed activities
timeline, users can see the valid intervals calculated
for each of that activity’s constraints, as well as the
final intersected valid interval. For activities in the
failed to schedule timeline, users can see the two
pieces of information identified during the failure
analysis - the first scheduling step at which the
activity would have failed to schedule, and the
constraints that were unsatisfiable.

4.2 Resource Usage

For the energy and peak power timelines, additional
information is available on what activities contributed
to the resource usage and how much they contributed.
At any time in either of these timelines, users can
inspect the resource users.

For the energy timeline, this will show a list of the
energy used by each activity from the start of the plan
up to that time, in decreasing order of how much
energy they used. This allows users to see which
activities are causing the most strain on the resource.
If an activity fails to schedule due to lack of energy
available, they may want to change constraints on an
activity that is causing the strain on the energy to
allow it to schedule at a different time in the plan.
Fig. 4 shows an example of this information.

Figure 4. Information about energy usage prior to a
certain time

Similar information is available for the peak power
timeline. Inspecting a time point on this timeline will
show a list of each activity drawing power at that
time, and what their peak power draw is, in
decreasing order of power usage. Fig. 5 shows an
example of this information.

Figure 5. Information about peak power draw at a
certain time

5 CREATING A SCHEDULE AND USING
CROSSCHECK

Science planners use the Component-based
Campaign Planning, Implementation and Tactical
tool (COCPIT), shown in Fig. 6, ​to add activities and
constraints to a plan.

Figure 6. COCPIT is the interface used to create a
schedule

Activities are defined in an activity dictionary. Some
activity constraints are defined in the dictionary, such
as resources used, and state requirements and effects.
In COCPIT, users can add execution time constraints
and dependency constraints to activities.

Once the user has determined all of the activities and
constraints for the plan, they call Copilot to produce a
grounded schedule. COCPIT then displays all of the
activity start times, heating activities, wake/sleep
activities. From a grounded schedule, lower-level
command sequences are generated and uplinked to
the rover on a daily basis.

COCPIT will also indicate which activities failed to
schedule. Users are given a link to the Crosscheck
visualization of the schedule to understand how they
may change constraints to allow failed activities to
schedule. Examples of this are given in the following
subsections.

5.1 Failure due to Valid Intervals

Fig. 7 shows an example of an activity failing to
schedule due to there being no intersections between
the valid intervals of the activity’s execution time and
UHF interaction constraints. The UHF interaction
constraint dictates what sorts of communication
passes an activity can be in parallel with.

Figure 7. An activity failed to schedule due to its
incompatible execution time constraint and UHF

interaction constraint

The first failure step is identified as two. The activity
that was scheduled prior to the first failure step is
identified as a UHF activity. Thus the user must
either change where this UHF activity is scheduled,
change the UHF interaction constraint on the failed
activity, or change the execution constraint on the
failed activity. The UHF activity time and UHF
interaction constraint are not feasible for science
planners to change. This would lead them to change
the execution time constraint on the activity.

Fig. 8 shows another example of an activity failing to
schedule due to the intersections of its constraints’
valid intervals.

Figure 8. An activity failed to schedule due to
incompatibilities between its execution and

dependency constraints, as well as its dependency
and unit resource constraints

The execution valid intervals do not intersect with the
dependency valid intervals and the dependency valid
intervals do not intersect with the unit resource valid
intervals. The first failure step shows us the
conflicting activity. Users are also given the
information about unit resources the failed activity
and the conflicting activity have in common, and any
dependency constraints the activity has.

In this example, the dependency requires the failed
activity and the conflicting activity to be in parallel,
but they both require the same resources. A science
planner would likely change or remove the
dependency constraint on the failed activity.
Likewise, the science planner would likely change
the failed activity’s execution constraint, by widening
it to give the activity more possible times to schedule
at, or moving it to a more appropriate point in time.

5.2 Failure during sleep/heat scheduling

Fig. 9 shows an example of an activity failing to
schedule due to its final valid intervals being outside
of the operability window of the activity’s required
heaters. Science planners would remedy this to
change the activity’s constraints, likely its execution
constraints, to be within the operability window of
the activity’s heaters.

Figure 9. An activity failed to schedule due to its final
valid intervals being outside of the heater operability

window

Fig. 10 shows an example of an activity failing to
schedule due to peak power draw being too high
during its final valid intervals. Users can inspect the
peak power timeline at the time they would expect
the activity to schedule at to determine what other
activities are drawing the most power at that time.
They may choose to change constraints on the failed
activity to allow it to schedule at a time when peak
power draw is lower, or they may choose to change
constraints on previously scheduled activities
occurring at the same time, to allow for more power
availability at this time.

Figure 10. An Activity failed to schedule due to the
peak power draw being too high

6 CONCLUSION

We have described the ground-based automated
scheduling system, Copilot, that will be used for the
Mars 2020 Rover, as well as the explainable
scheduling tool, Crosscheck, developed for use
alongside Copilot. Copilot will allow for science
planners to spend less time creating a schedule of
their desired activities that do not violate any
constraints. Crosscheck will aid in this by allowing
the science planners to understand how the schedule
was created, why activities failed to schedule given
their constraints, and how they may alter activities
and their constraints to achieve the desired schedule.

7 RELATED WORK

Bresina et al. [6] created an automated scheduling
system for the Mars Exploration Rover Mission
called MAPGEN. MAPGEN was a constraint-posting
planner, and it explicitly indicated temporal
flexibility, allowing users to drag activities until they
reached their earliest or latest allowed start times.
Unlike Crosscheck, it does not explicitly indicate
why the planner could not achieve the desired result.

Ramaswamy et al. [8] created a tool to visualize
various execution runs of a given input plan to the
Mars 2020 scheduler. This tool indicates how often
an activity failed to execute over all execution runs,
as well as how often activities executed in parallel or
switched order temporally. Crosscheck focuses on
visualizing a single schedule, and gives information
about why an activity failed to schedule.

The Rosetta Orbiter mission [9] used automated
scheduling to schedule science activities. A static
visualization of each scheduling iteration was
available to users, as well as the valid intervals for
each activity. The constraints that caused the failure
as well as the earliest scheduling step an activity
would have failed at is not given as it is in
Crosscheck, rather, users have to infer the conflicting
constraints by inspecting the valid intervals visually.

Acknowledgement

This work was performed at the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration. © 2020 California Institute of
Technology. Government sponsorship acknowledged.

References
[1] Jet Propulsion Laboratory (2020). Mars 2020
Perseverance Rover. Online at
https://mars.nasa.gov/mars2020/ (as of September 3,
2020).

[2] Chi, W., Agrawal, J., Chien, S., Fosse, E. &
Guduri, U. (2019). Optimizing parameters for
uncertain execution and rescheduling robustness.
International Conference on Automated Planning
and Scheduling (ICAPS 2019)​.

[3] Rabideau G. & Benowitz E. (2017). Prototyping
an Onboard Scheduler for the Mars 2020 Mission.
IWPSS. ​142-150.

[4] ​Chi, W., Chien, S. & Agrawal, J. (2020).
Scheduling with complex consumptive resources for
a planetary rover. ​International Conference on
Automated Planning and Scheduling (ICAPS 2020)​.

[5] Agrawal, J., Chi, W., Chien, S., Rabideau, G.,
Kuhn, S. & Gaines, D. (2019). Enabling limited
resource-bounded disjunction in scheduling. ​11th
International Workshop on Planning and Scheduling
for Space (IWPSS 2019)​. 7–15.

[6] Bresina, J. L., Jonsson, A. K.. Morris, P. H. &
Rajan, K. (2005). Activity planning for the mars
exploration rovers. ​International Conference on
Automated Planning and Scheduling (ICAPS 2005).
40–49.

[7] Jet Propulsion Laboratory (2020). Electrical
power - nasa mars. Online at
https://mars.nasa.gov/mars2020/spacecraft/rover/elect
rical-power/​ (as of September 3, 2020).

https://mars.nasa.gov/mars2020/timeline/overview/
https://mars.nasa.gov/mars2020/spacecraft/rover/electrical-power/
https://mars.nasa.gov/mars2020/spacecraft/rover/electrical-power/

[8] Alper Ramaswamy, B. B., Agrawal, J., Chi, W.,
Kim Castet, S. Y., Davidoff, S. & Chien, S. (2019).
Supporting automation in spacecraft activity planning
with simulation and visualization. ​AIAA Scitech 2019
Forum​. 2348.

[9] Chien, S., Rabideau, G., Tran, D., Troesch, M.,
Doubleday, J., Nespoli, F., Ayucar, M. P., Sitje, M.
C., Vallat, C., Geiger, B., Altobelli, N., Fernandez,
M., Vallejo, F., Andres, R., & Kueppers, M.
(2015). Activity-based scheduling of science
campaigns for the rosetta orbiter. ​International Joint
Conference on Artificial Intelligence (IJCAI 2015)​.

